

Cambridge Technical Sport and Physical Activity

<u>- L3</u>

Units of Study

Year 12:

- Unit 1 Body Systems (90 Credits Exam)
- Unit 2 Sports Coaching (90 Credits Coursework)

Year 13:

- Unit 3 Sport Organisation and Development (60 Credits Exam)
- Unit 17 Sports Injury and Rehabilitation (60 Credits Coursework)
- Unit 19 Sport and Exercise Psychology (60 Credits Coursework)

Energy Systems

Muscle Fibre Types

- Name the three types of muscle fibres?
- Name the characteristics of these fibres?
- Give sporting examples that each of the muscle fibre types would be suited to?

The Big Question

Fact: Food is not energy for movement or performance.

Question: Is eating tailored, performance enhancing diets a pointless process and a false business economy?

Learning Objectives

- To know the different types of energy systems
- To understand which energy systems are used in different sports/activities

Keywords

- Adenosine Tri Phosphate (ATP)
- Creatine Phosphate Energy System(PC)
- Lactic Acid System
- Aerobic Energy System
- Metabolism of Fats

Introduction to Energy

- At all times our bodies are expending energy
- Energy is needed just to exist and to create movement

The **three** different types of energy are:

1. Chemical

- Energy produced by a complex of chemical reactions
- Which can then be made available as:

2. Kinetic

• Energy due to **movement**, which results from muscular contractions

3. Potential

• Is **stored** energy

Introduction to ATP

Link to Big Question

- The body extracts energy from **food** and then thousands of chemical reactions are responsible for this energy transfer.
- ATP is the *only* compound that we can get energy from <u>It's the only</u> usable form of energy in the body!
- Only enough ATP in the body to last three seconds and it consists of a base adenine and three phosphate molecules.
- It is formed by a reaction between an Adenosine Diphosphate (ADP) molecule and a phosphate
- Hence, ADP requires energy so as to resynthesise/recreate ATP

Introduction to ATP

- Energy is stored in the chemical bonds of the molecules
- When a bond is broken energy is released
- When a bond is made energy is stored
- When ADP binds with another phosphate, energy is stored for later use
- THE ENERGY SYSTEMS within the body can function AEROBICALLY AND ANAEROBICALLY what's the difference?

So...what does this mean for sport?

- ATP Splitting provides us with 2-3 seconds of kinaesthetic (movement) performance.
- Raw, stored energy within the muscle itself.
- Quickly accessible
- Used for all initial movement.
- Meaning...we can get a few paces away from the bear...but that's it!!!

Key Point: None of this is possible without enzyme involvement. **Enzymes break things down** and are the basis of our **metabolism**.

How to Remember

Think 007 – Casino Royale!!

CYONIDE

 Stops every single enzyme = no reactions = no energy therefore we die!!!!

24/08/2022

Three Energy Systems

Process:

ATP Splitting (Anaerobic)

Systems:

- ATP-PC (Anaerobic)
- Lactic Acid System (Anaerobic)
- The Aerobic System (Aerobic)
- Fat Metabolism (Aerobic)

1st Energy System – Resynthesis of ATP via Phosphocreatine as a source.

Key points – recap:

- ATP-PC is an immediate source of energy
- PC Phosphocreatine this is a high energy compound
- Provides the necessary energy to combine ADP to P
- Remember ATP lasts 1-3 seconds
- High intensity without oxygen
- Lasts 8-9 seconds

Total Performance time = 10-12 seconds...but what performance?

The Alactacid/ATP-PC Energy System

Energy System	Characteristics	Advantages	Disadvantages
Alactacid or ATP-PC System	Shortest duration – highest intensity 7-10 seconds; no o2 is needed anaerobic ; After used go back to other two systems – 30m sprint; power lifting; long jump	Quick simple reaction; PC stores readily available within the cell; Reaction doesn't rely on o2;No fatiguing by-products	PC stores only sufficient to last about 10 seconds

Question Time

Answer the following questions in the exam paper:

Q.1	Q.7

Q.2 Q.11

Q.3

Q.4 Q.13

Q.6 Q.15

System Two – Anaerobic Glycolysis – AKA -LACTIC ACID SYSTEM

- Anaerobic System
- Fuel used is a Carbohydrate compound
- Stored in the muscles and liver as glycogen
- Converted to glucose through enzyme glycogen phoshorylase
- Undergoes series of reactions know as <u>anaerobic</u> glycolysis
- Started by the enzyme Phosphofructokinase (PFK) eventually converted to pyruvic acid
- This process releases enough energy to remake 2ATP

- Short-term energy system made by the partial breakdown of liver and muscle glucose and glycogen without oxygen- termed *Anaerobic Glycolysis*
- This produces Lactic Acid as a by-product through a chemical reaction caused by the enzyme Lactate
 Dehydrogenase
- Middle intensity source <u>10 seconds to 3 minutes</u>

System Two – LACTIC ACID SYSTEM

Think of an example from sport for the Lactic Acid System:

- Striker Sprinting (High Intensity) for ball ½ length of pitch and back with it – Lasts longer than 10 seconds
- Q. What do you think the advantages and disadvantages of this system are?

The LA System

Energy System	Characteristics	Advantages	Disadvantages
Lactic Acid System	Lasts 10 seconds- 3 minutes depending on fitness and intensity; 400m race most difficult as a sprint; no o2 and over in 50 seconds	Quick reaction that doesn't rely on o2	Can only use carbohydrates. Produces LA which has a –ive effect on performance

Question Time

Answer the following questions in the exam paper:

Q.5a

Q. 5b

Q.9

Q.10a

Q. 10b

Q.14

Q16

Show You Know

• Explain how a 1500m runner is able to metabolise energy sources to perform in a race.

