

Advanced Mathematics Support Programme®

- This expression expands to give 4 terms...which simplify to 3 terms.
- How many terms are in the unsimplified expansion of (x + 3)(x + 4)(x + 5)? Be prepared to explain your thinking
- Be prepared to explain your thinking...

1. Expand and simplify (2x+3)(3x-5)

5. Evaluate (no calc allowed)

 $\left(2+\frac{1}{3}\right)\left(2-\frac{1}{3}\right)$

- 2. Write $(x + 3)^2 4$ in the form $ax^2 + bx + c$
- 6. Find the area of this rectangle $\frac{2+3\sqrt{5}}{2}$

Expand and simplify (2a+2)(3x - 4a + 3)

4. Expand and simplify 3x(x-3)(x+5)

- 7. Expand and simplify (5 - 4x)(3x + 6) + (5x - 2)(3 + 4x)
- 8. Find the area of the triangle and write it in the form $ax^2 + bx + c$

3.

The story So Far.....

Solutions on the next slide....

Oamsp The story so far Solutions

Unsure about any of these? Search **Expanding Brackets**

The story so far Solutions

amsp

 $\left(2+\frac{1}{3}\right)\left(2-\frac{1}{3}\right)$

Did you notice this is the difference of two squares? $(a + b)(a - b) = a^2 - b^2$

6. Find the area of this rectangle

7. Expand and simplify

(5 - 4x)(3x + 6) + (5x - 2)(3 + 4x)

8. Find the area of the triangle and write it in the from $ax^2 + bx + c$

$$2^{2} - \left(\frac{1}{3}\right)^{2}$$
$$4 - \frac{1}{9} = 3\frac{8}{9}$$

Area = $(2 + 3\sqrt{5})(3 - \sqrt{5})$ $6 - 2\sqrt{5} + 9\sqrt{5} - (3\sqrt{5} \times \sqrt{5})$ $7\sqrt{5} + (6 - 15)$ $7\sqrt{5} - 9$

 $\begin{array}{r} 15x + 30 - 12x^2 - 24x + 15x + 20x^2 - 6 & -8x \\ 20x^2 - 12x^2 + 15x + 15x & -24x - 8x + 30 & -6 \\ 8x^2 - 2x + 24 \end{array}$

Area =
$$\frac{1}{2}$$
 x height x base
 $\frac{1}{2}(6x - 4)(x + 2)$
 $(3x - 2)(x + 2)$
 $3x^2 + 4x - 4$

Unsure about any of these? Search **Expanding Brackets**

x + 2

These diagrams represent a method for calculating 63 x 42 x 75

- Can you see what is going on?
- What are the values of the coloured sections?

These diagrams represent a method for calculating 63 x 42 x 75

- $+(3 \times 40 \times 70) + (3 \times 40 \times 5) + (3 \times 2 \times 70) + (3 \times 2 \times 5)$
- = 198 450

This helps us answer the question on the first slide. How many terms will there be when we expand (x + 3)(x + 4)(x + 5)? 8 terms.

How might you go about expanding the following?

(x+2)(x+1)(x+2)

- Is there a way you could use the working on the previous slide to help?
- How would the geometric diagram have to change?
- Can you use a grid method to speed things up?

How might you go about expanding the following?

(x+2)(x+1)(x+2)

Is there a way you could use the working on the previous slide to help?

The (x + 2)(x + 1)(x + 2) expansion is the same as the 'splitting' of 63 x 42 x 75 into (60 + 3)(40 + 2)(70 + 5) in the initial task. Therefore we can just substitute into the long line of working:

 $=(x \times x \times x) + (x \times x \times 2) + (x \times 1 \times x) + (x \times 1 \times 2) + (2 \times x \times x) + (2 \times x \times 2) + (2 \times 1 \times x) + (2 \times 1 \times 2)$

 $= x^{3} + 2x^{2} + x^{2} + 2x + 2x^{2} + 4x + 2x + 4$

 $= x^3 + 5x^2 + 8x + 4$

How might you go about expanding the following?

(x+2)(x+1)(x+2)

• How would the geometric diagram have to change?

Notice there is an x in each of the brackets in the question above.

You should be able to see this represented by a cube in the bottom left corner of the diagram.

Think again

How might you go about expanding the following?

(x+2)(x+1)(x+2)

Can you use a grid method to speed things up?

First expand two of the brackets as shown

Now use the expression obtained from the first step to set up another grid that is 3 x 2

$$\frac{x + 2}{x^{2} + 3x + 2}$$

Notice how the grid method remains in 2D by 'stepping'.

This is the equivalent of calculating the volume of a prism as crosssectional area x perpendicular height.

 $(x+2)(x^2+3x+2)$ $x^3+2x^2+3x^2+6x+2x+4$

$$= x^3 + 5x^2 + 8x + 4$$

Getting bigger

The cube is going to have its lengths increased in one of three ways

Method A

Each side is increased by 2 units Method B

One side is increased by 3 units, one side is increased by 2 units, and one side is increased by 1 unit Method C

One side is increased by 5 units, one side is increased by 2 units, and one side is decreased by 1 unit

Can you prove which of the new solids will have the largest volume?

Getting bigger

Solutions on the next slide....

Getting bigger

Method A	Method B	Method C
Each side is increased by 2 units	One side is increased by 3 units, one side is increased by 2 units, and one side is increased by 1 unit	One side is increased by 5 units, one side is increased by 2 units, and one side is decreased by 1 unit
A. $(x+2)(x+2)(x+2)$	B. $(x+3)(x+2)(x+1)$	C . $(x + 5)(x - 1)(x + 2)$
$= (x + 2)(x^{2} + 4x + 4)$ = $x^{3} + 4x^{2} + 4x + 2x^{2} + 8x + 8$ = $x^{3} + 6x^{2} + 12x + 8$	$= (x + 3)(x^{2} + 3x + 2)$ = $x^{3} + 3x^{2} + 2x + 3x^{2} + 9x + 6$ = $x^{3} + 6x^{2} + 11x + 8$	$= (x + 5)(x^{2} + x - 2)$ = $x^{3} + x^{2} - 2x + 5x^{2} + 5x - 10$ = $x^{3} + 6x^{2} + 3x - 10$

Because x is a side length we know that x is positive. Therefore A is the greatest as 12x + 8 is larger than 11x + 8 and 3x - 10

Will this method always work? Can you find a set of changes where it is not possible to tell?

Oamsp[®] Expanding Cubics and beyond

Previously we saw how we could use a grid for expanding brackets such as $(1 + x)^2$

	1	+x
1	1	+ <i>x</i>
+x	+ <i>x</i>	$+x^{2}$

So
$$(1+x)^2 = 1 + 2x + 1x^2$$

	1	+2x	$+x^{2}$
1	1	+2x	$+x^{2}$
+x	+ <i>x</i>	+2x	$+x^{3}$

So
$$(1+x)^3 = 1 + 3x + 3x^2 + 1x^3$$

Can you use a similar approach to expand

•
$$(1+x)^4$$

• $(1+x)^5$
• $(1+x)^6$

Expanding Cubics and beyond

Solutions on the next slide....

Camsp[®] Expanding Cubics Solutions

	1	+3 <i>x</i>	$+3x^{2}$	+x ³
1	1	+3x	$+3x^{2}$	+ <i>x</i> ³
+x	+ <i>x</i>	$+3x^{2}$	$+3x^{3}$	$+x^{4}$

So $(1+x)^4 = 1 + 4x + 6x^2 + 4x^3 + 1x^4$

	1	+4x	$+6x^{2}$	$+4x^{3}$	+ <i>x</i> ⁴
1	1	+4x	$+6x^{2}$	$+4x^{3}$	$+x^{4}$
+x	+x	$+4x^{2}$	$+6x^{3}$	$+4x^{4}$	+ <i>x</i> ⁵

So $(1+x)^5 = 1 + 5x + 10x^2 + 10x^3 + 5x^4 + 1x^5$

	1	+5 <i>x</i>	$+10x^{2}$	$+10x^{3}$	$+5x^{4}$	+ <i>x</i> ⁵
1	1	+5x	$+10x^{2}$	$+10x^{3}$	$+5x^{4}$	+ <i>x</i> ⁵
+x	x	$+5x^{2}$	$+10x^{3}$	$+10x^{4}$	$+5x^{5}$	$+x^{6}$

So $(1+x)^6 = 1 + 6x + 15x^2 + 20x^3 + 15x^4 + 6x^5 + 1x^6$

Do you notice anything about the coefficients in the expansions?

Have you seen this triangle before?

- Look back at the coefficients you found
- Can you see any connection to the numbers in the triangle?

If we put the coefficients into a triangular pattern ...

- The coefficients are the numbers in a row of Pascal's triangle.
- The coefficients in the expansion of $(1 + x)^4$ are the numbers in row 4 of Pascal's triangle

Camsp Pascal's Triangle Expansions

Use the triangle to help you Complete these expansions

• $(1+x)^7$

• $(1+x)^8$

For the link to the solutions to the above questions - and to find out to extend these ideas further into AS/A level Mathematics – see the next slide.

Pascal's Triangle Expansions

Follow the link to the solutions

1. Expand and simplify $\left(\frac{1}{3}x + \frac{1}{9}\right)\left(3x - \frac{2}{3}\right)$ 5. Find the volume of a cube with side length x - 4

2. Expand and simplify (x + 1)(x + 2)(x + 3)

3. Expand and simplify $(x-3)(x+2)^2$

4. Expand and simplify $(2 - \sqrt{3})(1 + \sqrt{3})(1 - \sqrt{3})$ 6. Expand and simplify $(x^2 - 2)(x^2 + 2)(x + 1)$

- 7. Write $(\sqrt{y} + \sqrt{8y})^2$ in the form $a + b\sqrt{2}$.
 - Given that $(\sqrt{y} + \sqrt{8y})^2 = 54 + b\sqrt{2}$. Find values for y and b.

8. Simplify
$$\frac{(x-1)(x+2)}{(x+3)} - \frac{4}{2x+1}$$

Summary and Review

Solutions on the next slide....

Camsp[®] Summary and review Solutions

1. Expand and simplify $\left(\frac{1}{3}x + \frac{1}{9}\right)(3x - \frac{2}{3})$

2. Expand and simplify (x + 1)(x + 2)(x + 3)

3. Expand and simplify $(x-3)(x+2)^2$

4. Expand and simplify

$$(2 - \sqrt{3})(1 + \sqrt{3})(1 - \sqrt{3})$$

* Did you notice this is a difference of two squares? (x² + 3x + 2)(x + 3)x³ + 3x² + 2x + 3x² + 9x + 6

 $\begin{pmatrix} \frac{1}{3}x + \frac{1}{9} \\ \frac{1}{3}x + \frac{1}{9} \end{pmatrix} \begin{pmatrix} 3x - \frac{2}{3} \\ x^2 - \frac{2}{9}x + \frac{3}{9}x - \frac{2}{27} \\ x^2 + \frac{1}{9}x - \frac{2}{27} \end{pmatrix}$

 $x^3 + 6x^2 + 11x + 6$

$$(x-3)(x^{2}+4x+4)$$

$$x^{3}-3x^{2}+4x^{2}-12x+4x-12$$

$$x^{3}+x^{2}-8x-12$$

$$(2 - \sqrt{3})(1^2 - (\sqrt{3})^2)$$
$$(2 - \sqrt{3})(1 - 3)$$
$$-2(2 - \sqrt{3})$$
$$2\sqrt{3} - 4$$

Oamsp Summary and review Solutions

6. Expand and simplify $(x^2 - 2)(x^2 + 2)(x + 1)$ * Did you notice this is a difference of two squares?

7. Write $(\sqrt{y} + \sqrt{8y})^2$ in the form $a + b\sqrt{2}$.

Given that $(\sqrt{y} + \sqrt{8y})^2 = 54 + b\sqrt{2}$. Find values for y and b.

8. Simplify
$$\frac{(x-1)(x+2)}{(x+3)} - \frac{4}{2x+1}$$

(x-4)(x-4)(x-4)(x-4)(x²-8x+16)x³-8x²+16x-4x²+32x-64x³-12x²+48x-64Solution((x²)²-(2)²)(x+1)(x⁴-4)(x+1)x⁵+x⁴-4x-4

$$(\sqrt{y} + \sqrt{8y})(\sqrt{y} + \sqrt{8y})$$
$$(\sqrt{y})^2 + (\sqrt{8}x(\sqrt{y^2})) + (\sqrt{8}x(\sqrt{y^2})) + (\sqrt{8y})^2$$
$$y + 2y\sqrt{8} + 8y = 9y + 4y\sqrt{2}$$
$$As 9y + 4y\sqrt{2} = 54 + b\sqrt{2}$$
$$9y = 54 \text{ so } y = 6$$
$$4y = b \text{ so } b = 4 \times 6 = 24$$

$$\frac{(2x+1)(x-1)(x+2) - 4(x+3)}{(x+3)(2x+1)}$$

$$\frac{(2x^3 + 2x^2 - 4x + x^2 + x - 2) - (4x+12)}{(x+3)(2x+1)}$$

$$\frac{(x+3)(2x+1)}{(x+3)(2x+1)}$$

Read more about Pascal's triangle, interact with it and find out more about it's heritage and who really discovered it first!

<u>Discover</u> more expansions linking to geometrical representations. You'll find a <u>hint</u> and a potential <u>solution</u> from other students to help you too.

Watch this video and encounter the almost endless amount of number patterns contained within Pascal's triangle.

Contact the AMSP

J 01225 716 492

admin@amsp.org.uk **(a)**

