

Advanced Mathematics Support Programme ${ }^{\ominus}$

Did you know?
Sunrise and sunset times are modelled using trigonometrical equations
For San Diego, California, a simple equation to model daylight hours would be:

$$
\text { Number of daylight hours }=2.4 \sin (0.0017 t-1.377)+12
$$

where t is the day of year from 0 to 365

From the graph can you tell which dates of the year are the shortest and longest day?

() amsp
 Solving equations with Trigonometry

1. Calculate the length of the side marked x in this triangle.

2. Calculate the value of the angle marked x in this triangle.

3. Calculate the value of the side marked x in this triangle

4. Calculate the value of the angle marked x in this triangle.

5. Calculate the value of the side marked x in this triangle

Sine rule

6. Calculate the value of the side marked x in this triangle.

Cosine rule

7. Calculate the value of the angle marked x in this triangle.

8. Calculate the value of the side marked x in this triangle.

Sine rule

Solving equations with Trigonometry

Solutions on the next slide....

() anss ${ }^{\circ}$ Solving equations with Trigonometry Solutions

1. Calculate the length of the side marked x in this triangle.

$$
\begin{aligned}
& \sin 30=\frac{x}{7} \\
& x=7 \times \sin 30 \\
& x=3.5 \mathrm{~cm}
\end{aligned}
$$

2. Calculate the value of the angle marked x in this triangle.

2 cm

$$
\begin{aligned}
& \tan x=\frac{5}{2} \\
& x=\tan ^{-1}\left(\frac{5}{2}\right) \\
& x=68.2^{\circ} \text { to 1d.p }
\end{aligned}
$$

$$
\begin{aligned}
& \cos 40=\frac{6}{x} \\
& x \cos 40=6 \\
& x=\frac{6}{\cos 40} \\
& x=7.8 \text { to } 1 \text { d.p }
\end{aligned}
$$

4. Calculate the value of the angle marked x in this triangle.

20 cm

$$
\begin{aligned}
& \sin y=\frac{10}{15} \\
& y=\sin ^{-1}\left(\frac{10}{15}\right) \\
& y=41.81^{\circ} \\
& x=2 y \\
& x=83.6^{\circ} \text { to } 1 \text { d.p }
\end{aligned}
$$

(annso Solving equations with Trigonometry Solutions

5. Calculate the value of the side marked x in this triangle

6. Calculate the value of the side marked x in this triangle.

7. Calculate the value of the angle marked x in this triangle.

8. Calculate the value of the side marked x in this triangle.

$$
\begin{aligned}
& \frac{x}{\sin 40}=\frac{8}{\sin 30} \\
& x=\frac{8 \times \sin 40}{\sin 30} \\
& x=10.3 \mathrm{~cm} \text { to } 1 \mathrm{~d} . \mathrm{p}
\end{aligned}
$$

$$
x^{2}=4.1^{2}+5.3^{2}-(2 \times 4.1 \times 5.3 \times \cos 50)
$$

$$
x^{2}=16.96 \ldots
$$

$$
x=4.1 \text { to } 1 \mathrm{~d} . \mathrm{p}
$$

$$
\longrightarrow \quad \cos x=\frac{3.5^{2}+4.8^{2}-6.2^{2}}{2 \times 3.5 \times 4.8}
$$

$$
\begin{aligned}
& \frac{x}{\sin 55}=\frac{6}{\sin 80} \quad \text { (The third angle is } \\
& x=\frac{6 \times \sin 55}{\sin 80} \quad x=5.0 \mathrm{~cm} \text { to } 1 \mathrm{~d} . \mathrm{p}
\end{aligned}
$$

Rearrange the cosine rule formula first

Other Equations

Solve the following:

1. $3^{x}=243$
2. $2^{2 x+3}=128$
3. $\sqrt{x+3}=7$
4. $2 \sqrt{x}+1=\sqrt{12}+3$
5. $3 \sqrt{x}+12=7 \sqrt{x}$
6. $\sin x=\frac{1}{2} \quad 0 \leq x \leq 360$
7. $\cos x=0.866 \quad 0 \leq x \leq 360$
8. $\frac{8}{3 x+7}=2$

Other Equations

II

Solutions on the next slide....

(Damsp
 Other Equations Solutions

$$
\begin{aligned}
\longrightarrow \quad & 3^{5}=243 \\
& 3^{x}=3^{5} \\
& x=5
\end{aligned}
$$

1. $3^{x}=243$
2. $2^{2 x+3}=128$
3. $\sqrt{x+3}=7$
$\longrightarrow \quad 2^{2 x+3}=2^{7}$
$2 x+3=7$
$2 x=4$
$x=2$

Squaring gives
$x+3=49$
$x=46$
4. $2 \sqrt{x}+1=\sqrt{12}+3$

$$
\rightarrow \quad \begin{aligned}
& 2 \sqrt{x}=\sqrt{12}+2 \\
& 2 \sqrt{x}=2 \sqrt{3}+2 \\
& \longrightarrow \quad \sqrt{x}=\sqrt{3}+1 \\
& x=(\sqrt{3}+1)^{2} \\
& x=3+1+2 \sqrt{3} \\
& \\
& x=4+2 \sqrt{3}
\end{aligned}
$$

(Damsp" Other Equations 2 Solutions

5. $3 \sqrt{x}+12=7 \sqrt{x}$

$$
\text { 6. } \quad \sin x=\frac{1}{2} \quad 0 \leq x \leq 360^{\circ}
$$

7. $\cos x=0.866 \quad 0 \leq x \leq 360^{\circ}$

8. $\frac{8}{3 x+7}=2$

$$
\left.\begin{array}{rl}
\longrightarrow \quad 12 & =7 \sqrt{x}-3 \sqrt{x} \\
12 & =4 \sqrt{x} \\
3 & =\sqrt{x} \\
x & =9
\end{array}\right] \quad \begin{aligned}
& x=\sin ^{-1}\left(\frac{1}{2}\right)=30^{\circ}
\end{aligned}
$$

Using the graph and the symmetry we can see there is another value which is $180^{\circ}-30^{\circ}=150^{\circ}$
So $x=30^{\circ}$ or $x=150^{\circ}$
$x=\cos ^{-1}(0.866)=30^{\circ}$
similarly using the graph and symmetry
$x=360-30=330^{\circ}$
So $x=30^{\circ}$ or $x=330^{\circ}$
$8=2(3 x+7)$
$8=6 x+14$
$-6=6 x$
$x=-1$

Missing info

	Answer
Length of AB	
Length of BD	
Length of AD	
Size of $\angle B A D$	
Size of $\angle A B D$	

	Answer
Length of WZ	
Length of $X Z$	
Size of $\angle W Z X$	
Size of $\angle W X Z$	

Use your knowledge of regular shapes to complete the tables above (you will need them for the next task).

Missing info

Solutions on the next slide....

(Damsp

Missing info Solution

	Answer
Length of AB	2 cm
Length of BD	$\sqrt{3}^{*}$
Length of AD	1 cm
Size of $\angle B A D$	60°
Size of $\angle A B D$	30°

	Answer
Length of WZ	1 cm
Length of $X Z$	$\sqrt{2} \mathrm{~cm}$
Size of $\angle W Z X$	45°
Size of $\angle W X Z$	45°

* By Pythagoras' theorem $\mathrm{BD}^{2}=A B^{2}-A D^{2}$

So $B D=\sqrt{2^{2}-1^{2}}=\sqrt{3}$

Let's get Triggy

Use your tables and diagrams from the previous activity to complete this table

$\boldsymbol{\theta}$	$\mathbf{3 0}^{\circ}$	$\mathbf{4 5}^{\circ}$	$\mathbf{6 0}^{\circ}$
$\sin \theta$	$\frac{\square}{A B}=\frac{1}{2}$	$\frac{X W}{}=\frac{W Z}{X Z}=-$	$\frac{\overline{A B}}{}=-$
$\cos \theta$	$-=\frac{\sqrt{3}}{2}$	$-=\frac{W Z}{}=-$	$-=-$
$\tan \theta$	$-=\frac{1}{\sqrt{3}}$	$-=-=1$	$-=\frac{1}{1}=\sqrt{ }$

Hint available on next slide

(Damsp

Let's get Triggy Hint

Use your tables and diagrams from the previous activity to complete this table

Some examples are filled in to get you started

These will help	$\boldsymbol{\theta}$	30°	45°	60°
	$\sin \theta=$	$\frac{A D}{A B}=\frac{1}{2}$	$\frac{X W}{}=\frac{W Z}{X Z}=-$	$\overline{A B}=\frac{\sqrt{3}}{}$
	$\cos \theta=$	$-=\frac{\sqrt{3}}{}$	$-=\frac{W Z}{X W}=-$	$\frac{A D}{A B}=-$
	$\tan \theta=$	$-=\frac{}{\sqrt{3}}$	$-=-1$	$-=\frac{}{1}=\sqrt{ }$

Let's get Triggy

Solutions on the next slide....

Let's get Triggy Solution

Use your tables and diagrams from the previous activity to complete this table

$\boldsymbol{\theta}$	$\mathbf{3 0}$	$\mathbf{4 5}$	$\mathbf{6 0}^{\circ}$
$\sin \theta$	$\frac{A D}{A B}=\frac{1}{2}$	$\frac{X W}{X Z}=\frac{W Z}{X Z}=\frac{1}{\sqrt{2}}$	$\frac{B D}{A B}=\frac{\sqrt{3}}{2}$
$\cos \theta$	$\frac{B D}{A B}=\frac{\sqrt{3}}{2}$	$\frac{W X}{W Z}=\frac{W Z}{W X}=\frac{1}{\sqrt{2}}$	$\frac{A D}{A B}=\frac{1}{2}$
$\tan \theta$	$\frac{A D}{B D}=\frac{1}{\sqrt{3}}$	$\frac{W X}{W Z}=\frac{W Z}{W X}=1$	$\frac{B D}{A D}=\frac{\sqrt{3}}{1}=\sqrt{3}$

(Damsp

Trig Maze

Starting at $\sqrt{3}$ on the left hand side of the rectangle, find your way to the right hand side by landing only on expressions that are equivalent to $\sqrt{3}$

$\frac{\tan 30^{\circ}}{3}$	$\frac{9}{3^{0.5}}$	$\frac{\sqrt{18}}{\sqrt{6}}$	$\frac{1.5}{0.05}$	$\frac{\sqrt{12}}{\sqrt{2}}$	$\frac{2 \sqrt{6}}{\sqrt{4}}$	$\frac{\sqrt{9}}{3^{0}}$
$\frac{\sqrt{27}}{3}$	$\frac{3 \sqrt{3}}{\sqrt{3}}$	$2 \cos 60^{\circ}$	$\frac{\tan 60^{\circ}}{2}$	$\frac{\sin 30^{\circ}}{\cos 30^{\circ}}$	$3 \tan 30^{\circ}$	$\frac{\sqrt{6}}{\sqrt{2}}$
$\frac{6}{\sqrt{2}}$	$\frac{\cos 60^{\circ}}{\sin 60^{\circ}}$	$\frac{9}{3 \sqrt{3}}$	$\frac{3}{\sqrt{3}}$	$2 \cos 30^{\circ}$	$\frac{3+\sqrt{3}}{\sqrt{3}}-1$	$3 \tan 60^{\circ}$
$\sqrt{3}$	$\frac{9}{\sqrt{3}}$	$2 \sin 60^{\circ}$	$\frac{\sqrt{9}}{3}$	$\frac{\sqrt{9}}{\sqrt{3}}$	$\frac{\sqrt{6}}{2}$	$\frac{\cos 30^{\circ}}{2}$
$\frac{1}{2}$	$\tan 60^{\circ}$	$\frac{\sqrt{12}}{2}$	$2 \sin 30^{\circ}$	$\frac{\sin 60^{\circ}}{\cos 60^{\circ}}$	$\frac{9^{0.5}}{3^{0.5}}$	$\frac{2 \sqrt{6}}{\sqrt{8}}$
$\frac{\cos 60^{\circ}}{2}$	$\frac{\sqrt{12}}{4}$	$\frac{\sin 30^{\circ}}{2}$	$\frac{\sqrt{9}}{3}$	$\frac{\tan 60^{\circ}}{3}$	$\frac{9 \times 10^{1}}{3 \times 10^{-1}}$	$\frac{3+\sqrt{3}}{\sqrt{3}}$

Trig Maze

II

Solutions on the next slide....

Oamsp.

Trig Maze Solution

Starting at $\sqrt{3}$ on the left hand side of the rectangle, find your way to the right hand side by landing only on expressions that are equivalent to $\sqrt{3}$

$\frac{\tan 30^{\circ}}{3}$	$\frac{9}{3^{0.5}}$	$\frac{\sqrt{18}}{\sqrt{6}}$	$\frac{1.5}{0.05}$	$\frac{\sqrt{12}}{\sqrt{2}}$	$\frac{2 \sqrt{6}}{\sqrt{4}}$	$\frac{\sqrt{9}}{3^{0}}$
$\frac{\sqrt{27}}{3}$	$\frac{3 \sqrt{3}}{\sqrt{3}}$	$2 \cos 60^{\circ}$	$\frac{\tan 60^{\circ}}{2}$	$\frac{\sin 30^{\circ}}{\cos 30^{\circ}}$	$3 \tan 30^{\circ}$	$\frac{\sqrt{6}}{\sqrt{2}}$
$\frac{6}{\sqrt{2}}$	$\frac{\cos 60^{\circ}}{\sin 60^{\circ}}$	$\frac{9}{3 \sqrt{3}}$	$\frac{3}{\sqrt{3}}$	$2 \cos 30^{\circ}$	$\frac{3+\sqrt{3}-1}{\sqrt{3}}$	$3 \tan 60^{\circ}$
$\sqrt{3}$	$\frac{9}{\sqrt{3}}$	$2 \sin 60^{\circ}$	$\frac{\sqrt{9}}{3}$	$\frac{\sqrt{9}}{\sqrt{3}}$	$\frac{\sqrt{6}}{2}$	$\frac{\cos 30^{\circ}}{2}$
$3^{\frac{1}{2}}$	$\tan 60^{\circ}$	$\frac{\sqrt{12}}{2}$	$2 \sin 30^{\circ}$	$\frac{\sin 60^{\circ}}{\cos 60^{\circ}}$	$\frac{9^{0.5}}{3^{0.5}}$	$\frac{2 \sqrt{6}}{\sqrt{8}}$
$\frac{\cos 60^{\circ}}{2}$	$\frac{\sqrt{12}}{4}$	$\frac{\sin 30^{\circ}}{2}$	$\frac{\sqrt{9}}{3}$	$\frac{\tan 60^{\circ}}{3}$	$\frac{9 \times 10^{1}}{3 \times 10^{-1}}$	$\frac{3+\sqrt{3}}{\sqrt{3}}$

The area of an equilateral triangle is $10 \mathrm{~cm}^{2}$.

What are the lengths of the sides?

Two birds are sitting looking at the top of a tower block, as shown in the diagram
They are 30m apart.
How tall is the tower?

Triggy Problems

II

Solutions on the next slide....

Oamsp Triggy Problems Solutions

The area of an equilateral triangle is $10 \mathrm{~cm}^{2}$.
What are the lengths of the sides?
STEP 1
As this is an equilateral
triangle we know all the
sides are equal so lets call
them x
All the angles are equal so
they are all 60°

STEP 2

We now know 2 sides and an included angle (60°)
So we can use the formula $\frac{1}{2} a b \sin \theta=10$ where $a=b=x$ and $\theta=60^{\circ}$

$$
\begin{gathered}
\frac{1}{2} \times x \times x \times \sin 60^{\circ}=10 \\
\frac{1}{2} x^{2} \times \frac{\sqrt{3}}{2}=10 \\
x^{2} \times \sqrt{3}=40 \\
x^{2}=\frac{40}{\sqrt{3}} \\
x=4.806 \text { to } 3 s f
\end{gathered}
$$

Triggy Problems Solutions

Start by labelling the diagram
Height of tower = CD = h

$$
\begin{gathered}
(\boldsymbol{x}+\mathbf{3 0}) \boldsymbol{\operatorname { t a n } 1 6}=\boldsymbol{x} \boldsymbol{\operatorname { t a n } 3 0} \\
x \tan 16+30 \tan 16=x \tan 30 \\
30 \tan 16=x \tan 30-x \tan 16 \\
30 \tan 16=x(\tan 30-\tan 16) \\
\frac{30 \tan 16}{\tan 30-\tan 16}=x \\
x=29.6 \text { m to } 3 s f(\text { which is } B C)
\end{gathered}
$$

Rearrange to make h the subject in both expressions
$(x+30) \tan 16^{\circ}=h$ and $x \tan 30^{\circ}=h$
As the height is the same we can set these equal to each other

$$
\begin{gathered}
\text { Height }=x \tan 30 \\
\text { Height }=29.6 \times \tan 30 \\
\text { Height }=17.1 \mathrm{~m}(3 \mathrm{~s})
\end{gathered}
$$

amsp ${ }^{\circ}$

$$
\text { If } \frac{a b}{a+b}=\frac{1}{4} \text { and } \frac{b c}{b+c}=\frac{1}{2} \text { and } \frac{a c}{a+c}=\frac{1}{8} \quad \text { find } a, b \text { and } c
$$

(Damsp

Multiple Equations

$$
\text { If } \frac{a b}{a+b}=\frac{1}{4} \text { and } \frac{b c}{b+c}=\frac{1}{2} \text { and } \frac{a c}{a+c}=\frac{1}{8} \quad \text { find } a, b \text { and } c
$$

Hint:

- Rearrange these equations so they are linear i.e. no fractions
- Find an expression for b and c in terms of a
- Substitute into the equation that uses b and c

Multiple Equations

Follow the link to the solutions

Powers

Using what you know about powers, can you solve this equation

$$
(x-6)^{x^{2}-9}=1
$$

Powers

Using what you know about powers, can you solve this equation

$$
(x-6)^{x^{2}-9}=1
$$

Hint

- What do you know about a^{0}
- What do you know about 1^{a}
- What do you know about $(-1)^{a}$

Powers

Solutions on the next slide....

Powers Solution

Using what you know about powers, can you solve this equation

$$
(x-6)^{x^{2}-9}=1
$$

Case 1: The power is zero

$$
\begin{gathered}
x^{2}-9=0 \\
x= \pm 3
\end{gathered}
$$

Case 2: The base is 1

$$
\begin{gathered}
x-6=1 \\
x=7
\end{gathered}
$$

Check the power, $7^{2}=49$ and 1 to the power of anything is 1
Case 3: The base is -1 (the power must be even)

$$
\begin{gathered}
\qquad \begin{array}{c}
x-6=-1 \\
x=5 \\
\text { Check the power, } x^{2}-9=25-9=16
\end{array}
\end{gathered}
$$

Geometry Puzzle

What's the angle?

Geometry Puzzle

II

Solutions on the next slide....

(Damsp Geometry Puzzle Solution

There are many ways to solve this problem - this is just one way!
Rotate the square to the right so that it looks like the second picture

- Let the side length of the hexagon be 1 unit

- An external angle of a regular hexagon is 60° - therefore the internal angle is 120°
- Therefore the base angles of the isosceles triangle inside the hexagon are 30° We can now consider this right angled triangle \longrightarrow
to find the length of half of the side of the square $(\boldsymbol{x}) \cos 30^{\circ}=\frac{x}{1}$ So $x=\frac{\sqrt{3}}{2} \quad\left(\right.$ as $\left.\cos 30^{\circ}=x\right)$
Therefore the side length of the square is $2 \times \frac{\sqrt{3}}{2}=\sqrt{3}$

This puzzle was written by Catriona Shearer if you are interested in more like this look on twitter @Cshearer41

Still want more?

Read about early astronomy and the beginnings of a mathematical science. Essentially it is where trigonometry comes in.

Discover more about 'Trig-om-nom-etry' from the properties of triangles right through to trigonometric function.

Watch this video and learn how equations are used to help us model the environment we live in and make a difference to our lives.

Contact the AMSP

01225716492
 admin@amsp.org.uk

amsp.org.uk
Advanced_Maths

