Yr11-12 Transition Activities

 Subject: Chemistry

THE CITY OF LEICESTER COLLEGE

Contents

Part One - Using maths in chemistry page 2Standard form and Significant figuresConverting UnitsMeasuring chemicals - the moleMeasuring chemicals - Solutions and concentration
Part Two - Skills for Practical Chemistry page 9
Drawing tables
Task for submission
Part Three - Research Activities page 12
Cornell notes and Referencing
Task for submission
Part four - Minimising Risk page 15Risk AssessmentTask for submission

Part One - Using maths in chemistry

The first section of this booklet focuses on some of the mathematical application of A level Chemistry. You will be expected to rearrange equations, convert between units, use standard form and report data to an appropriate number of significant figures. There is a section for each of these skills below.

Standard form and Significant figures

In the calculations you will be asked to perform as part of your A level studies you will need to be confident with both representing numbers in standard form and giving them to a certain number of significant figures.

When numbers are very large or very small they are written in standard form. In standard form a number is written in the format;

$$
a \times 10^{n} \text { where } 1 \leq a<10 \text { and } n \text { is an integer }
$$

In an experiment, or from a calculation you may only be able to give your answer with a certain amount of accuracy. This accuracy is shown by giving your answer to a certain number of significant figures.

Worked example: Standard form

Question

Express 0.00268 in standard form.
Answer
Step <1>
Identify the value for ' a.' In this case it will be 2.68 .
Step <2>
Work out how many places the decimal place must be moved to form this number.

$$
\text { Ư̇์ } 00268
$$

The decimal place must move 3 places to the right to become 2.68.
This number of places is the value for the integer ' n.' If the decimal point moves to the right ' n ' is negative. If the decimal place moves to the left ' n ' is positive.

Step < 3>
Substitute your values into the general format, $a \times 10^{n}$
Therefore in standard form 0.00268 is 2.68×10^{-3}.

Worked example: Significant figures

Question

Express 0.56480900 to 3 significant figures.
Answer
Step <1>
Identify the numbers which are significant using the rules below;
Rule 1 Any number that isn't 0 is significant.
Rule 2 Any 0 that is between two numbers that are not 0 is significant.
Rule 3 Any 0 that is before all the non-zero digits is not significant.
Rule 4 Any 0 that is after all of the non-zero digits is only significant if there is a decimal point. In this case the significant numbers are 0.56480900 .
Step <2>
Identify the three most significant figures. These are the significant numbers which are furthest to the left (have the biggest values) i.e. 0.56480900 .
Step < 3>
Look at the next number. If this number is 5 or above, then round up. If this number is 4 or less, do not round up.
In this case the next number is 8 , so we round up to $\underline{0.565}$.

1 This question is about expressing numbers in standard form.
a) Express the following numbers in standard form.
i. 0.0023
iii. 2750000
ii. 1032
iv. 0.000528
b) Write out the following numbers in ordinary form.
i. 2.01×10^{3}
iii. $\quad 8.41 \times 10^{2}$
ii. 5.2×10^{-2}
iv. 1.00×10^{-4}
c) For each of the pairs of numbers below identify which is the bigger number.
i. 1.43×10^{23} or 1.43×10^{24}
ii. 5.16×10^{-3} or 5.16×10^{-4}
iii. 12.4×10^{23} or 1.50×10^{24}

2 Express the following numbers to the number of significant figures indicated.
a) 4.74861 to 2 sig. fig.
b) 507980 to 3 sig. fig.
c) 809972 to 3 sig. fig.
d) 06.345 to 3 sig. fig.
e) 7840 to 3 sig. fig.
f) 0.007319 to 3 sig. fig.

3 Carry out the following calculations expressing the numbers in standard form to the degree of accuracy indicated;
a) $\left(4.567 \times 10^{5}\right) \times\left(2.13 \times 10^{-3}\right)$ to 3 sig. fig.
b) $\left(1.567 \times 10^{3}\right) \div\left(2.245 \times 10^{-1}\right)$ to 4 sig. fig.
c) $\left(5.4 \times 10^{-1}\right) \div\left(2.7 \times 10^{-3}\right)$ to 1 sig. fig.
d) $\left(2.00 \times 10^{-2}\right) \times\left(2.00 \times 10^{-4}\right)$ to 3 sig. fig.

Converting units

In A level chemistry we use SI units for making measurements.
For length: mm, cm and m
For volume: $\mathrm{cm}^{3}, \mathrm{dm}^{3}$ and m^{3}
For mass: g and kg.
For Concentration: $\mathrm{mol} / \mathrm{dm}^{3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ and $\mathrm{g} / \mathrm{dm}^{3}\left(\mathrm{~g} \mathrm{dm}^{-3}\right)$
For temperature: ${ }^{\circ} \mathrm{C}$ and Kelvin, K https://www.youtube.com/watch?v=I-Rjs9qw9Bw
You need to be able to convert between these units so you can express yourself clearly and in the most appropriate manner.

Complete the table by converting between $\mathrm{cm}^{3}, \mathrm{dm}^{3}$ and m^{3}

cm^{3}	dm^{3}	$\mathrm{~m}^{3}$
1000000	1000	1
50		
	1	0.0034
	0.5	
25		
670		

1 Convert the following volumes;
a) $12.2 \mathrm{~cm}^{3}$ into dm^{3}
b) $0.015 \mathrm{~cm}^{3}$ into dm^{3}
c) $132 \mathrm{dm}^{3}$ into cm^{3}
d) $0.054 \mathrm{dm}^{3}$ into cm^{3}
e) $25 \mathrm{dm}^{3}$ into m^{3}
f) $0.48 \mathrm{~m}^{3}$ into dm^{3}
g) $25 \mathrm{~cm}^{3}$ into m^{3}
h) $381 \mathrm{~m}^{3}$ into cm^{3}
2) Which is bigger?
a. What temperature is $0^{\circ} \mathrm{C}$ in K ?
b. What temperature is 1000 K in ${ }^{\circ} \mathrm{C}$?
c. How many kg is 5 g ?
d. How many m^{3} is $14 \mathrm{dm}^{3}$
e. Order these from largest to smallest: $700 \mathrm{~cm}^{3}, 0.06 \mathrm{dm}^{3}, 6.4 \times 10^{-4} \mathrm{~m}^{3}$
f. Order these from largest to smallest: $18 \mathrm{~kg}, 1.8 \times 10^{5} \mathrm{~g}, 1.8 \times 10^{-4} \mathrm{~g}, 1.8 \times 10^{2} \mathrm{~kg}$

Measuring chemicals - the mole

From this point on you need to be using an A level periodic table, not a GCSE one you can view one here:
https://www.ocr.org.uk/Images/363792-unit-h032-and-h432-data-sheet.pdf

The mole is the chemists equivalent of a dozen, atoms are so small that we cannot count them out individually, instead we weigh out chemicals. The standard unit for measuring is the mole. The mass number on the periodic table shows the mass of 1 mole of each element. We can refer to this as the M_{r}, or the relative molecular mass.

For example: magnesium + sulfur \rightarrow magnesium sulphide

$$
\mathrm{Mg}+\mathrm{S} \rightarrow \mathrm{MgS}
$$

We can see that one atom of magnesium will react with one atom of sulfur, if we had to weigh out the atoms we need to know how heavy each atom is.

From the periodic table: $\mathrm{Mg}=24.3$ and $\mathrm{S}=32.1$
If I weigh out exactly 24.3 g of magnesium this will be 1 mole of magnesium, if we counted how many atoms were present in this mass it would be a huge number ($6.02 \times 10^{23}!!!!$), if I weigh out 32.1 g of sulfur then I would have 1 mole of sulfur atoms.

So 24.3 g of Mg will react precisely with 32.1 g of sulfur, and will make 56.4 g of magnesium sulfide. The M_{r} of magnesium sulfide is 56.4 g . This is the mass of 1 mole of magnesium sulfide. There are 6.02×10^{23} molecules in 56.4 g of magnesium sulfide.

Here is a comprehensive page on measuring moles, there are a number of descriptions, videos and practice problems.

You will find the first 6 tutorials of most use here, and problem sets 1 to 3 . http://bit.ly/pixlchem9
http://www.chemteam.info/Mole/Mole.html

Answer the following questions on moles.

Q1 Arrange the terms mole, M_{r} and mass into 3 equations so each one is the subject. Use the triangle above for help.

Q2
a) How many moles of phosphorus pentoxide $\left(\mathrm{P}_{4} \mathrm{O}_{10}\right)$ are in 85.2 g ?
b) How many moles of potassium in 73.56 g of potassium chlorate $(\mathrm{V})\left(\mathrm{KClO}_{3}\right)$?
c) How many moles of water are in 249.6 g of hydrated copper sulfate(VI) $\left(\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}\right)$? For this one, you need to be aware the dot followed by $5 \mathrm{H}_{2} \mathrm{O}$ means that the molecule comes with 5 water molecules so these have to be counted in as part of the molecules mass.
d) What is the mass of 0.125 moles of tin sulfate $\left(\mathrm{SnSO}_{4}\right)$?
e) If I have 2.4 g of magnesium, how many g of oxygen $\left(\mathrm{O}_{2}\right)$ will I need to react completely with the magnesium? $2 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow \mathrm{MgO}$

Measuring chemicals - Solutions and concentrations

In chemistry a lot of the reactions we carry out involve mixing solutions rather than solids, gases or liquids.

You will have used bottles of acids in science that have labels saying 'Hydrochloric acid $1 \mathrm{M}^{\prime}$, this is a solution of hydrochloric acid where 1 mole of HCl , hydrogen chloride (a gas) has been dissolved in $1 \mathrm{dm}^{3}$ of water.

The dm^{3} is a cubic decimetre, it is actually 1 litre, but from this point on as an A level chemist you will use the dm^{3} as your volume measurement. $1 \mathrm{dm}^{3}=1000 \mathrm{~cm}^{3}$

http://bit.ly/pixlchem10

http://www.docbrown.info/page04/4 73calcs11msc.htm

Concentration

The concentration of a solution is defined in units of moles per cubic decimetre ($\mathrm{mol} / \mathrm{dm}^{3}$). Since $1 / \mathrm{dm}^{3}$ can also be represented as dm^{-3} the unit of concentration can also be represented by $\mathrm{mol} \mathrm{dm}^{-3}$.

By looking at the units of concentration of $\mathrm{mol} \mathrm{dm}^{-3}$ we can see that the equation for determining the concentration of a solution must be;

$$
\text { Concentration }\left(\mathrm{mol} \mathrm{dm}^{-3}\right)=\frac{\text { no. of moles }(\mathrm{mol})}{\text { volume }\left(\mathrm{dm}^{3}\right)}
$$

When calculating the concentration of a solution the volume must be given in units of dm^{3}. Therefore we need to be able to readily convert between units of $\mathrm{m}^{3}, \mathrm{dm}^{3} \mathrm{and} \mathrm{cm}^{3}$ in order to correctly give the concentration of a solution. The diagram below shows how to do this.

Worked example

Question

Determine the concentration of a solution in which 0.0158 mol of sodium chloride is dissolved in $25 \mathrm{~cm}^{3}$ of water.

Answer

Step <1>
Change the volume to dm^{3} by dividing by 1000 :
$25 \mathrm{~cm}^{3}=0.025 \mathrm{dm}^{3}$
Step <2>
Substitute the values into the equation remembering to use the units to help;
Concentration $\left(\mathrm{mol} / \mathrm{dm}^{3}\right)=\frac{0.0158 \mathrm{~mol}}{0.025 \mathrm{dm}^{3}}$

$$
\begin{aligned}
& =0.632 \mathrm{~mol} \mathrm{dm}^{-3} \\
& =\underline{0.63 \mathrm{~mol} \mathrm{dm}^{-3}} \text { (to } 2 \text { sig. fig) }
\end{aligned}
$$

Remember you can only give your final answer to the same degree of accuracy (significant figures) as the least accurate value used in the calculation. In this case to two significant figures.

1 Give the concentrations of the following aqueous solutions in $\mathrm{mol} \mathrm{dm}^{-3}$.
Give all final answers to an appropriate degree of accuracy.
a) 2.46 mol dissolved in $2.50 \mathrm{dm}^{3}$
b) 0.00500 mol dissolved in $24.6 \mathrm{~cm}^{3}$
c) 1.5 mol dissolved in $0.020 \mathrm{~cm}^{3}$
d) 63.2 mol dissolved in $2.00 \mathrm{~m}^{3}$
e) 0.021 mol dissolved in $4.5 \times 10^{-3} \mathrm{~m}^{3}$
f) 81.9 g of calcium carbonate, CaCO_{3} dissolved in $34.1 \mathrm{~cm}^{3}$
g) 23.4 g of hydrated copper sulfate, $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ dissolved in $2.5 \mathrm{dm}^{3}$

2 Calculate the following. Give all final answers to an appropriate degree of accuracy.
a) The number of moles of substance in;
i. $0.025 \mathrm{dm}^{3}$ of a $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ solution,
ii. $24.3 \mathrm{~cm}^{3}$ of a $0.150 \mathrm{~mol} \mathrm{dm}^{-3}$ solution
iii. $1.8 \times 10^{-3} \mathrm{~m}^{3}$ of a $1.28 \mathrm{~mol} \mathrm{dm}^{-3}$ solution
b) The mass of solid in each of the following solutions;
i. $0.0186 \mathrm{dm}^{3}$ of a $0.012 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of NaOH
ii. $36.3 \mathrm{~cm}^{3}$ of a $4.21 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of $\mathrm{Ca}(\mathrm{OH})_{2}$
iii. $1.23 \times 10^{-3} \mathrm{~m}^{3}$ of a $0.254 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of NaHCO_{3}.
3. a) Arrange the terms Moles, Concentration and Volume into 3 equations so each term is the subject.
b) For these questions you will need to combine mass and concentration equations. If these are too tricky at the moment go back to the examples and problems in the link above, then come back to them.
i. What is the concentration (in mol dm ${ }^{-3}$) of 9.53 g of magnesium chloride $\left(\mathrm{MgCl}_{2}\right)$ dissolved in $100 \mathrm{~cm}^{3}$ of water?
ii. What is the concentration (in $\mathrm{mol} \mathrm{dm}^{-3}$) of 13.248 g of lead nitrate $\left(\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}\right)$ dissolved in $2 \mathrm{dm}^{3}$ of water?
iii. If I add $100 \mathrm{~cm}^{3}$ of $1.00 \mathrm{~mol} \mathrm{dm}^{3} \mathrm{HCl}$ to $1.9 \mathrm{dm}^{3}$ of water, what is the molarity of the new solution?
iv. What mass of silver is present in $100 \mathrm{~cm}^{3}$ of $1 \mathrm{moldm}^{-3}$ silver nitrate $\left(\mathrm{AgNO}_{3}\right)$?
v. The Dead Sea, between Jordan and Israel, contains 0.0526 moldm $^{-3}$ of Bromide ions (Br^{r}), what mass of bromine is in $1 \mathrm{dm}^{3}$ of Dead Sea water?

Answers to Part One

Standard form and significant figures
1 a) i. 2.3×10^{-3}
ii. 1.032×10^{3}
iii. 2.75×10^{6}
iv. 5.28×10^{-4}
b) i. 2010
ii. 0.052
iii. 841
iv. 0.0001
c) i. 1.43×10^{24}
ii. 5.16×10^{-3}
iii. 1.50×10^{24}

2 a) 4.7
b) 508000
c) 810000
d) 6.35
e) 7840
f) 0.00732

3 a) 9.73×10^{2}
b) 6.980×10^{3}
c) 2×10^{2}
d) 4.00×10^{-6}

Converting units

1 a) $0.0122 \mathrm{dm}^{3}$
b) $0.000015 \mathrm{dm}^{3}$ or $1.5 \times 10^{-5} \mathrm{dm}^{3}$
c) $132000 \mathrm{~cm}^{3}$
d) $54 \mathrm{~cm}^{3}$
e) $0.025 \mathrm{~m}^{3}$
f) $480 \mathrm{dm}^{3}$
g) 0.000025 or $2.5 \times 10^{-5} \mathrm{~m}^{3}$
h) $381000000 \mathrm{~cm}^{3}$ or $3.81 \times 10^{8} \mathrm{~cm}^{3}$
2. Which is bigger?
a. 273 K
b. $727^{\circ} \mathrm{C}$?
c. 5×10^{-3}
d. $0.014 \mathrm{~m}^{3}$
e. $700 \mathrm{~cm}^{3}>6.4 \times 10^{-4} \mathrm{~m}^{3}>0.06 \mathrm{dm}^{3}$,
f. $1.8 \times 10^{2} \mathrm{~kg}=1.8 \times 10^{5} \mathrm{~g}>18 \mathrm{~kg}>1.8 \times 10^{-4} \mathrm{~g}$,

Measuring chemicals - the mole

1. mole $=$ mass $/ M_{r} \quad M_{r}=$ mass $/$ mole \quad mass $=$ mole $\times M_{r}$
2. a) $85.2 / 284=0.3$ moles
b) $73.56 / 122.6=0.6 \mathrm{moles}$
c) $249.5 / 249.5=1.0$ moles
d) 0.125 x $212.8=26.6 \mathrm{~g}$
e) $2 \mathrm{Mg}: 2 \mathrm{O}$ or $1: 1$ ratio
2.4 g of $\mathrm{Mg}=0.1$ moles so we need 0.1 moles of oxygen $\left(\mathrm{O}_{2}\right)$: 0.1 x $32=3.2 \mathrm{~g}$

Measuring chemicals - Solutions and concentration

1 a) $2.46 \mathrm{~mol}^{2} 2.50 \mathrm{dm}^{3}=0.984 \mathrm{~mol} \mathrm{dm}^{-3}$ (to 3 sig. fig.)
b) $24.6 \mathrm{~cm}^{3}=0.0246 \mathrm{dm}^{3} ; 0.005 \mathrm{~mol}^{2} 0.0246 \mathrm{dm}^{3}=0.203 \mathrm{~mol} \mathrm{dm}^{-3}$ (to 3 sig. fig.)
c) $0.02 \mathrm{~cm}^{3}=2 \times 10^{-5} \mathrm{dm}^{3} ; 1.5 \mathrm{~mol} / 2 \times 10^{-5} \mathrm{dm}^{3}=75000 \mathrm{~mol} \mathrm{dm}^{-3}$ (to 2 sig. fig.)
d) $2 \mathrm{~m}^{3}=2000 \mathrm{dm}^{3} ; 63.2 \mathrm{~mol} / 2000 \mathrm{dm}^{3}=\underline{0.0316 \mathrm{~mol} \mathrm{dm}^{-3}}$ (to 3 sig. fig.)
e) $4.5 \times 10^{-3} \mathrm{~m}^{3}=4.5 \mathrm{dm}^{3} ; 0.021 \mathrm{~mol} / 4.5 \mathrm{dm}^{3}=\underline{0.0047 \mathrm{~mol} \mathrm{dm}^{-3}}$ (to 2 sig. fig.)
f) $81.9 \mathrm{~g} / 100.1 \mathrm{~g} \mathrm{~mol}^{-1}=0.818 \mathrm{~mol} ; 34.1 \mathrm{~cm}^{3}=0.0341 \mathrm{dm}^{3} ; 0.818 \mathrm{~mol} / 0.0341 \mathrm{dm}^{3}=24.0 \mathrm{~mol}$ dm ${ }^{-3}$ (to 3 sig. fig.)
h) $23.4 \mathrm{~g} / 249.6 \mathrm{~g} \mathrm{~mol}^{-1}=0.0938 \mathrm{~mol} ; 0.0938 \mathrm{~mol}^{2} 2.5 \mathrm{dm}^{3}=\underline{0.038 \mathrm{~mol} \mathrm{dm}^{-3}}$ (to 2 sig. fig.)

2 a) i. $0.025 \mathrm{dm}^{3} \times 0.100 \mathrm{~mol} \mathrm{dm}^{-3}=\underline{0.0025 \mathrm{~mol}}$
ii. $24.3 \mathrm{~cm}^{3}=0.0243 \mathrm{dm}^{3} ; 0.0243 \mathrm{dm}^{3} \times 0.150 \mathrm{~mol} \mathrm{dm}^{-3}=\underline{3.65 \times 10^{-3} \mathrm{~mol}}$ (to 3 sig. fig.)
iii. $1.8 \times 10^{-3} \mathrm{~m}^{3}=1.8 \mathrm{dm}^{3} ; 1.8 \mathrm{dm}^{3} \times 1.28 \mathrm{~mol} \mathrm{dm}^{-3}=2.3 \mathrm{~mol} \mathrm{dm}^{-3}$ (to 2 sig. fig.)
b) i. $0.0186 \mathrm{dm}^{3} \times 0.012 \mathrm{~mol} \mathrm{dm}^{-3}=2.23 \times 10^{-4} \mathrm{~mol}$; $2.23 \times 10^{-4} \mathrm{~mol} \times 40.0 \mathrm{~g} \mathrm{~mol}^{-1}=8.9 \times 10^{-3} \mathrm{~g}$ (to 2 sig. fig.)
ii. $36.3 \mathrm{~cm}^{3}=0.0363 \mathrm{dm}^{3} ; 0.0363 \mathrm{dm}^{3} \times 4.21 \mathrm{~mol} \mathrm{dm}^{-3}=0.153 \mathrm{~mol} ; 0.153 \mathrm{~mol} \times 74.1 \mathrm{~g} \mathrm{~mol}^{-1}=$ 11.3 g (to 3 sig. fig.)
iii. $1.23 \times 10^{-3} \mathrm{~m}^{3}=1.23 \mathrm{dm}^{3} ; 1.23 \mathrm{dm}^{3} \times 0.254 \mathrm{~mol} \mathrm{dm}^{-3}=0.312 \mathrm{~mol} ; 0.312 \mathrm{~mol}^{2} 84.0 \mathrm{~g} \mathrm{~mol}^{-1}=$ 26.2 g (to 3 sig. fig.)
3.a) Concentration $=$ mole $/$ volume Volume $=$ moles $/$ concentration moles $=$ concentration x volume
b) i) $9.53 \mathrm{~g} / 95.3=0.1$ moles, in $100 \mathrm{~cm}^{3}$ or $0.1 \mathrm{dm}^{3} \quad$ in $1 \mathrm{dm}^{3} 0.1 \mathrm{moles} / 0.1 \mathrm{dm}^{3}=1.0 \mathrm{~mol} \mathrm{dm}^{-3}$
ii) $13.284 \mathrm{~g} / 331.2=0.04$ moles, in $2 \mathrm{dm}^{3}$ in $1 \mathrm{dm}^{3} 0.04$ moles $/ 2 \mathrm{dm}^{3}=0.02 \mathrm{~mol} \mathrm{dm}^{-3}$
iii) $100 \mathrm{~cm}^{3}$ of $0.1 \mathrm{~mol} \mathrm{dm}^{-3}=0.01$ moles added to a total volume of $2 \mathrm{dm}^{3}=0.01 \mathrm{moles} / 2 \mathrm{dm}^{3}=0.005$ $\mathrm{mol} \mathrm{dm}{ }^{-3}$
iv) in $1 \mathrm{dm}^{3}$ of $1 \mathrm{~mol} \mathrm{dm}^{-3}$ silver nitrate, 1 mole of $\mathrm{Ag}=107.9 \mathrm{~g}$ in $0.1 \mathrm{dm}^{3}=107.9 \times 0.1=10.79 \mathrm{~g}$
v) $0.0526 \times 79.7=42.0274 \mathrm{~g}$

Part Two - Skills for Practical Chemistry

Tables

Below are three situations in which data is used to find an answer to a research question. For each situation:

1. Write the research question
2. Identify the Independent variable
3. Identify the Dependent variable
4. List as many Control variables as possible
5. Determine if the results will be qualitative or quantitative
6. Draw a table for the results, include suitable headings with units (if appropriate)

1, Emilia was making strawberry jam. She tried four different recipes each with a different ratio of sugar to fruit to see which consistency she preferred.

2, Traffic management scientists were measuring the speed of cars to find if the time of day was a factor in speeding.

3, How does the volume of acid added to an alkali affect the pH ?

Submit your response to this task

The A level chemistry course has 12 Required Practicals. They are used to develop your skills in handling equipment, making accurate measurements, developing a method, communication of data and minimising risk. You will carry out this one, Qualitative tests for anions, in Year 12.

Five solutions contain the following anions. Sulfate ion, $\mathrm{SO}_{4}{ }^{2-}$, carbonate ion, $\mathrm{CO}_{2}{ }^{2-}$, $\mathrm{Chloride}, \mathrm{Cl}, \mathrm{Bromide}$, Br^{-}, and lodide, l^{-}.

1. Describe how to test for and identify each anion. Use the links below to help.
2. List every chemical required. Include the reagents and the solutions to be tested.

Qualitative tests were carried out. The results were: solution 1,2 and 4 had no reaction with hydrochloric acid, solutions 3 and 5 effervesced. Solutions 1,2 and 4 formed precipitates with silver nitrate solution. The colours of the precipitates for solutions 2 and 4 were difficult to distinguish between, the precipitate of solution 1 was white. Solution 3 also formed a white precipitate when reacted with barium chloride.
3. Draw and complete a table for these results. Include the identity of each anion.
4. Identify the advantages of a table over the prose format above. The results provide a response to the question "What is found in the research performed?".

CGSE refresher of how to test for carbonate ions, sulfate ions and halide ions. https://www.youtube.com/watch?v=mWTgHjdea4Y

A level - how to distinguish between halide ions https://www.chemguide.co.uk/inorganic/group7/testing.html

A level - how to distinguish between halide ions https://www.youtube.com/watch?v= 96chpEILg
A level - how to test for anions https://www.youtube.com/watch?v=CwHjlgDqXNA

Answers - Part 2

1. Write the research question
2. Identify the Independent variable
3. Identify the Dependent variable
4. List as many Control variables as possible
5. Determine if the results will be qualitative or quantitative
6. Draw a table for the results, include suitable headings with units (if appropriate)

1, Emilia was making strawberry jam. She tried four different recipes each with a different ratio of sugar to fruit to see which consistency she preferred.

Which strawberry jam recipe do I prefer?
IV - ratio of sugar to fruit
DV - consistency of jam
CV - type of fruit, ratio of other ingredients, length of time to cook, temperature of heat applied Qualitative results

Ratio of fruit to sugar as stated in recipe	Consistency	Preference rank order
1	This is descriptive, leave plenty of space.	
2		
3		
4		

2, Council management scientists were measuring the speed of cars to find if the time of day was a factor in speeding.

Does time of day affect traffic speed?
IV - time
DV - speed
CV - location, amount of warning drivers have about the speed check, type of warning drivers have about the speed check
Quantitative results

Time	Speed mph or ms^{-1}	Average speed
The smaller the time intervals the more precise the data.	This needs to measure multiple vehicles so will have multiple columns under the same heading	

3, How does the volume of acid added to an alkali affect the pH ?
How does the volume of acid added to an alkali affect the pH ?
IV - volume of acid added
DV-pH
CV - concentration of acid, concentration of alkali, type of acid, type of alkali
Quantitative results

Volume of acid added / cm^{3}	pH

Part 3: Research activities

Submit your response to this task

Choose task 1 and at least one other task from the list of topics below. Use your online searching abilities to find out as much about the topic as you can. Remember you are a prospective A level chemist so you should aim to push your knowledge. Present your information as Cornell notes with references. You will be marked on your research and referencing as part of the 12 Required Practicals in the A level course. Now is a good time to get to grips with how to reference accurately and quickly.

How to make Cornell notes: https://www.youtube.com/watch?v=IsR-10piMp4
How to reference:
https://www.google.com/search?q=how+to+reference\&rlz=1C1SQJL enGB797GB817\&oq=how+to+reference\&aqs= chrome..69i57j0j69i59j0l5.2666j0j7\&sourceid=chrome\&ie=UTF-8\#kpvalbx= CBS XsyEN4PwxgOa6LDACw51

You can make a 1-page summary for each one you research using Cornell notes:

http://coe.jmu.edu/learningtoolbox/cornellnotes.html

You must choose this: Task 1: Development of the atomic model What were the major ideas about atoms that led to the current model of the atom? Who were the Scientists involved? How was new information found? How were new information and ideas shared and reviewed?

Choose at least one from the rest of the list:

Task 2: Why is copper sulphate blue?
Copper compounds like many of the transition metal compounds have got vivid and distinctive colours - but why?
Task 3: Aspirin
What was the history of the discovery of aspirin, how do we manufacture aspirin in a modern chemical process?

Task 4: The hole in the ozone layer

Why did we get a hole in the ozone layer? What chemicals were responsible for it? Why were we producing so many of these chemicals? What is the chemistry behind the ozone destruction?

Task 5: ITO and the future of touch screen devices

ITO - indium tin oxide is the main component of touch screen in phones and tablets. The element indium is a rare element and we are rapidly running out of it. Chemists are desperately trying to find a more readily available replacement for it. What advances have chemists made in finding a replacement for it?

Task 6: The chemistry of fireworks

What are the component parts of fireworks? What chemical compounds cause fireworks to explode? What chemical compounds are responsible for the colour of fireworks?

Figure 1: http://coe.jmu.edu/learningtoolbox/images/noteb4.gif

Part 4 - Minimising risk

Part of being a good scientist is staying safe! Some of the chemicals you will use in your Chemistry course can be dangerous if handled carelessly, or mixed incorrectly.

The Consortium of Local Education Authorities for the Provision of Science Services (CLEAPPS) provide information for practical science to schools in many forms, including Student Safety Sheets. Click here to download a copy https://www.yumpu.com/en/document/read/22294738/student-safety-sheets-cleapss

You will use these sheets to find information about the chemicals and methods you will use during your A level study. Before completing any practical work in lessons, either you, your teacher or the Science Technicians, will complete a risk assessment. This identifies the possible dangers and identifies ways to minimise the dangers to an acceptable, safe level.

- Each chemical has its own entry in the risk assessment, which includes the concentration (where known) and the appropriate response for this concentration.
- The methods used (eg, heating, use of glassware, putting gases under pressure) have their own entry in the risk assessment.
- The disposal of the chemicals and contaminated equipment is noted.

How to use the student safety sheets:
In this example I shall use silver nitrate, this is used to test for aldehydes in Tollen's reagent and to test for halogenoalkanes.

1. Use the contents page to find the chemical
```
Student safety sheets
Contents ( \(2^{\text {nd }}\) edition, 2018)
```

```
Meroogprima
```

Meroogprima
\nvmes
\nvmes
Mmantod, N|,
Mmantod, N|,
lociteterg(1)

```
lociteterg(1)
```



```
Murast sttratutinct ofimsitpition (2)
```

```
Murast sttratutinct ofimsitpition (2)
```



```
Becticty
```

Becticty
Sacticey, Ravilus
Sacticey, Ravilus
Mydoctiorcace
Mydoctiorcace
N\mp@code{Naplovid}
N\mp@code{Naplovid}
Sutwe(V)acd
Sutwe(V)acd
Phouphorie(Maod
Phouphorie(Maod
Covi covics Emtanicacid
Covi covics Emtanicacid
8 Salolicacd. apirin wold ol d wiveryem
8 Salolicacd. apirin wold ol d wiveryem
Mummena,
Mummena,
Sodumindroide
Sodumindroide
S
S
S
S
Sofumwher Nionltats perwhate
Sofumwher Nionltats perwhate
Magrivm\& aliumata
Magrivm\& aliumata
Anmoviomata
Anmoviomata
Masi its compondi
Masi its compondi
4% Copser Litaconpoundz
4% Copser Litaconpoundz
Sodvmatiovelellpps
Sodvmatiovelellpps
Bviumcomponits
Bviumcomponits
Insthtsempounts
Insthtsempounts
Merury S is compeovis
Merury S is compeovis
Stesincorponsta
Stesincorponsta
46 Sieskicomponds
46 Sieskicomponds
47 Ororimbits sempovidi
47 Ororimbits sempovidi
Murvase! tr compound
Murvase! tr compound
Ine Bits cempond!
Ine Bits cempond!
S% Ongris cron
S% Ongris cron
Rabsodivemuterlys
Rabsodivemuterlys
Moren witar lover nulben
Moren witar lover nulben
tanal
tanal
6) Propmore
6) Propmore
I2. Enctomaproticrasmon
I2. Enctomaproticrasmon
3 Mvorucatons
3 Mvorucatons
Mndectiovicacid
Mndectiovicacid
SMavel
SMavel
66 M(terveotoid preponole bvarel, pertanole)

```
66 M(terveotoid preponole bvarel, pertanole)
```



```
Opmsindeners
```

Opmsindeners
SNeps

```
SNeps
```



```
7% Alrua/Wing 
```

7% Alrua/Wing
Nutaklogind reest
Nutaklogind reest
74 mavatug
74 mavatug
SNowecterandfemerter
SNowecterandfemerter
Sorendes andle
Sorendes andle
7% Slvesicmosflcation
7% Slvesicmosflcation
10 Alalmeat,
10 Alalmeat,
I, Govplimenh
I, Govplimenh
shlol I phouphorea
shlol I phouphorea
\$0. Vocabviny,
\$0. Vocabviny,
IS Momidevitry wntwis
IS Momidevitry wntwis
UNingabramblume

```
UNingabramblume
```



```
$6 Nitmusumene
```

\$6 Nitmusumene
Zreantacengonds
Zreantacengonds
it Trederinglondingl lolidoavion
it Trederinglondingl lolidoavion
% Watesupoul

```
    % Watesupoul
```


2. Silver compounds are on sheet 46 .

ent safety sheetsSilver and its compoundsincluding Silver bromide, chloride, iodide, nitrate (V) and oxide		
Substance	Hazard	Comment
Silver (metal] Solid	LUWMACATO	It is used in jewellery. It is an approved food additive, E174.
Silver halides, ie, silver bromide, chloride and iodide Solids	LOWMACATO	Widely used in photographic errulsions. They are decomposed by light to give siver metal and the halogen (which then reacts with other substances in the emulsion).
Silver nitrate(V) Solid and fairly-concentrated solutions (If 0.3 Mormore)	cantrent cuargeme EXWIUNUENIAL Mache	Dangen: cxidiser; causes severe skin burns and eүe damage, very toxic to aquaticlife. If swallowed, it may cause internal darrage due to absorption into the blood, followed by deposition of silver in various tissues. The solid explodes dangerously with magnesiumpowder and a drop of water. Accidents have caused many injuries and a very careful risk assessment is required before attempting this.
Silver nitrate(V) Dilute solutions (ifiess than 0.3 M but 0.18 M or more)	cunnusive	Danasn: causes severe eje darrage irritating to sloin. It may produce black stains on the skin, which, however, wear off in a few days.
Silver nitrate(V) Very dilute solutions (ifiess than 0.15 but 0.06 Mor more).		Wanweve: irritating to eyes and skin. Very dilute solutions are adequate for most school work when testing for halides in solution.
Silver nitrate(V) Extremely dilute solutions (ifless than 0.06M)	LUWHEATO	
Silver nitrate(V) (ammoniacal) ie, in armonia solution (Toller's Reagent)	Exuosite	It is used for aldehyde tests and should be prepared only on a test-tube scale, when needed, and discarded into plenty of water within \% hour, otherwise explosives may form. Falure to do this has caused accidents.
Silver oxide Solid	LUWHNCATO	It is used in some batteries, eg, button cells for watches and calculators.

Uypical control measures to reduce risk

* Use the lowest possible concentrationt wear eye protection.
* Awoid keeping solutions of silver compounds and ammonia for more than a few minutes.
* Avoid handing solid silver ritrate.

As sessing the risks

* What are the details of the activity to be undertaken? What are the harards?
* What is the chance of something going wrong?

Eg. Siver nitrate accidantany coming into contact with the shin.

- How serious would it be if something did go wrong?

Eg, Are thare hazardous reaction products, ag, fram tolutions of sivvar campounds with ammonia?

* How can the risk(s) be controNed for this activity?

Emergency action

- In the eye
- Swollowed
- Spilt on the shin or clothing
- Spilt on floor, bench, ete

Flood the eye with gently-running tap water for at least 10 minutes. Consult a medic.
Do no more than wash out the mouth with water. Do not induce vomiting. Consult a medic.
Remeve contarrinated dothing and rinseit. Wash off the skin with plenty of water. If the silver nitrate produces more than small burns, consulta medic.
Wear eye protection and gloves. Scocp up the solid. 月inse the area with water and wipe up, rinsing repeatedly. Rinse the mop or cloth thoreughly.
3. Sheet 46 has several silver compounds, we are looking for silver nitrate.
4. The method specified 0.1 M concentration, choose the most appropriate information.

Solids		
Silver nitrate(V) Solid and fairly-concentrated solutions (If 0.3 M or more)		DANGER: oxidiser; causes severe skin burns and eye damage; very toxic to aquatic life. If swallowed, it may cause internal damage due to absorption into the blood, followed by deposition of silver in various tissues. The solid explodes dangerously with magnesium powder and a drop of water. Accidents have caused many injuries and a very careful risk assessment is required before attempting this.
Silver nitrate(V) Dilute solutions (if less than 0.3 M but 0.18 M or more)		DANGER: causes severe eye damage; irritating to skin. It may produce black stains on the skin, which, however, wear off in a few days.
Silver nitrate(V) Very dilute solutions (if less than 0.18 but 0.06 M or more).		WARNING: irritating to eyes and skin. Very dilute solutions are adequate for most school work when testing for halides in solution.
Silver nitrate(V) Extremely dilute solutions (if less than 0.06 M)	LOWhazard	
Silver nitrate(V) (ammoniacal) ie, in ammonia solution (Tollen's Reagent)		It is used for aldehyde tests and should be prepared only on a test-tube scale, when needed, and discarded into plenty of water within $1 / 2$ hour, otherwise explosives may form. Failure to do this has caused accidents.
Silver oxide Solid	LOW HAZARD	It is used in some batteries, eg, button cells for watches and calculators.

Typical control measures to reduce risk

5. Take notice of the disposal information and emergency procedures. You should never need to use the emergency procedures because writing the risk assessment makes you aware of the risks, so therefore careful to avoid them!

Typical control measures to reduce risk

- Use the lowest possible concentration; wear eye protection.
- Avoid keeping solutions of silver compounds and ammonia for more than a few minutes.
- Avoid handling solid silver nitrate.

Assessing the risks

- What are the details of the activity to be undertaken? What are the hazards?
- What is the chance of something going wrong?

Eg, Silver nitrate accidentally coming into contact with the skin.

- How serious would it be if something did go wrong? Eg, Are there hazardous reaction products, eg, from solutions of silver compounds with ammonia?
- How can the risk(s) be controlled for this activity?

Eg, can it be done safely? Does the procedure need to be altered? Should goggles or safety spectacles be worn?

Emergency action

- In the eye
- Swallowed
- Spilt on the skin or clothing
- Spilt on floor, bench, etc

Flood the eye with gently-running tap water for at least 10 minutes. Consult a medic. Do no more than wash out the mouth with water. Do not induce vomiting. Consult a medic. Remove contaminated clothing and rinse it. Wash off the skin with plenty of water. If the silver nitrate produces more than small burns, consult a medic.
Wear eye protection and gloves. Scoop up the solid. Rinse the area with water and wipe up, rinsing repeatedly. Rinse the mop or cloth thoroughly.
6. Complete the Risk Assessment table with information from the sheets

A level Chemistry Risk assessment

Title of practical:	Date:

Outline of procedures:

Hazardous substance / procedure	Nature of hazard	Control measures (precautions)	Emergency action	Information sources (full url with date of access or, book title, author, publisher, date of publish and page number)
Silver nitrate solution (0.1M)	Irritant to eyes and skin	Wear safety glasses. Use only in test tube quantities. Discard of solutions within a few minutes.	```In eye: Flood with gently running water for min 10 minutes. Get medical attention. In mouth: rinse only, do not induce vomiting. Get medical attention. On skin: wash skin. Seek medical attention if burns. Spilt: wipe and rinse cloth thoroughly.```	CLEAPSS Student safety sheets, 2nd edition, 2018. Sheet 46.
Disposal of residues:				Carried out by: checked by: Date:

Submit your response to this task.
Complete the blank risk assessment on p19 with the chemicals required for the Qualitative Tests for Anions on page 12 of this booklet.
A level Chemistry Risk assessment

